Role of Metabolism in Pathological Aggregation of TDP-43 and its Down-Stream Toxicity
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INTRODUCTION RESULTS

 Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar

degeneration (FTLD) are two fatal neurodegenerative disorders d. Glucose Lactate
with considerable clinical and pathological overlap. T ‘
* Both disorders are characterized by the accumulation of GLUT3 SLC16

pathological aggregates that contain a number of proteins, most
notably TAR DNA-binding protein 43 kDa (TDP-43).

e TDP-43 loss-of-function is a potential mechanism in the
pathogenesis of ALS and FTLD.

 Conventionally ‘risky’ metabolic profiles in ALS and FTLD
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The initial goal of this study is to understand how TDP43 loss-
of-function affects energy metabolism in motor neurons.

METHODS
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glycolysis, pyruvate metabolism and lipid metabolism.

INTERIM CONCLUSION o

Following TDP43 loss-of-function:

* Thereis an increase in the energy demand motor neurons

* The motor neuron cells adapt to a hyper-metabolic
phenotype using both glycolysis and aerobic respiration
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Identification of the molecular targets underpinning the hypermetabolic status in TDP-43 loss-of-function.
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 Manipulation of identified targets for therapeutic potential in 3D neuronal culture model.
Energy Map in TDP loss-of-function e Metabolic phenotyping of motor neurons in TDP-43 aggregation.
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Characterisation of homozygous FUSA14 — ALS mouse model
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Introduction

FUSA14 heterozygous mice are knock-in FUS ALS
mouse model with a point-mutation at the intron 13
splice site (13845A>G) and a knocked-in humanized
FUS exon 15. They recapitulate many ALS phenotypes
at 18 months of age’.

We have developed homozygous FUSA14 recently.
Compared to the heterozygous model, the homozygous
model develops ALS phenotypes more aggressively,
showing ALS-like features at 3 months.
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Our focus of this study is on characterizing this
model at the cellular and molecular level.

Method
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Conclusion

The mislocalisation of FUS in spinal cord causes a series of
disruption, including increased expression of FUS via
autoregulation, disrupted FMRP equilibrium and a range of
transcriptional and translational gene dysregulation.
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Result 1: FUS is mislocalised in A14 motor
neurons
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Figure 1: FUS staining of spinal cord lower motor neurons in +/+ and
A14/ A14 spinal cord slices. FUS is mislocalised in A14/ A14 motor
neurons.

(A) Representative gray-scale images of motor neuron staining - FUS
and DAPI (nucleus) in split channels. +/+ has FUS restricted in
nucleus, while A14/ A14 shows two phenotypes — either FUS is
localized in both cytoplasm and nucleus, or FUS is completely
depleted from nucleus.

(B) FUS fluorescence in the nucleus and cytoplasm is analysed as a
ratio between the nuclear and cytoplasmic signal (mean * SEM, +/+
=3.929+0.279, A14/ A14 =0.9721+0.084, p-value < 0.0001).

Result 3: Increased FMRP puncta in
A14/A14 motor neurons

Background:

[1] FMRP is an important
protein related to
translational repression.
[2] Birsa et al. 2 has found
increased FMRP puncta in
neuronal axon culture.
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Figure 3: FMRP staining of spinal cord lower motor neurons in +/+
and A14/ A14 spinal cord slices (age: 1 month).

(A) Representative gray-scale images of motor neuron staining —
FMRP, ChAT (motor neuron) and DAPI (nucleus) in split channels.
(B) The result of the quantification of the puncta density (puncta
count/cell volume). Each colour represents one N (N=6) (Two-tailed
Mann-Whitney test, mean * SEM, +/+ =19.47+3.672, A14/ A14
=41.41+2.489, p-value < 0.0001).

1. Devoy, A. et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDeltal4’ knock-in mice. Brain 140, 2797-2805 (2017).
2. Birsa, N. et al. FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Sci Adv 7, eabf8660 (2021).
3. Humphrey, J. et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res 48, 6889—-6905 (2020).
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Result 2: FUS mislocalisation leads to
increased levels of its RNA and protein via
autoregulation
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Figure 2: RNA sequencing reveals the increased expression of FUS,
probably due to the disruption of the FUS autoregulation
mechanism.

(A) The sashimi plot of FUS in +/+ and A14/A14. Orange box outlines
where the intron 6&7 retention is lost in A14/ A14 .

(B) The comparison of FUS expression between +/+ and A14/A14. The
expression is quantified by the Deseq normalized read counts (mean
+ SEM, +/+ =4540+70.49, A14/A14 =5874+100.7, p-value < 0.0001)
(C) The comparison of FUS protein expression with the western blot,
the intensity is normalized to the total protein amount (p-value =
0.004).

Result 4: RNA metabolism disruption is
mainly due to FUS nuclear loss-of-function
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Figure 4: RNA sequencing indicates the transcriptional and
translational disruption in A14/A14 model is due to the loss of
function of FUS.
(A) The venn plot of differentially expressed (DE) genes in-/- and
A14/A14. Over 1000 DE genes are the same.
(B) The plot of log2 fold change of A14/A14 and -/-: although FUS
expression changes in different direction, most of the genes are
changed in the same direction.
(C) GO analysis result of the common DE genes. Upregulated genes
are enriched in translation-related process; while downregulated
genes are enriched in RNA splicing, energy-related GTPase activity.
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STRUCTURAL AND FUNCTIONAL ASPECTS OF MUTATIONS ASSOCIATED TO TYPE B KUFS DISEASE (CLN13)
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Abstract Lysosomal cysteine cathepsins belong to the C1 cysteine peptidase family (papain
subfamily). They play an important role under physiological conditions, where they are tightly
regulated by their endogenous inhibitors. However, if deregulated, they are involved in several
pathological processes, including neurodegeneration.

Among eleven human cysteine cathepsins, cathepsin F has unique biochemical and structural
properties. However, even two decades after its discovery, many questions still remain
unanswered, due to the challenges faced in order to get pure protein in sufficient quantities for
its structural and functional characterization.

On the other side, a sequence-based bioinformatics approach was crucial to evaluate the
suitability of the wild-type protein from cloning until 3D structure determination by X-ray
crystallography. Interestingly, our systematic approach, shows for the first time the bottlenecks
that prevented earlier attempts to get this protein using different strategies and/or expression
systems. Moreover, on the available 3D structure of the mature form of human cathepsin F, we
evaluated the effect of the mutations found in patients, thus associated with an adult-onset
neuronal ceroid lipofuscinosis, namely Type B Kufs disease (CLN13). These results, clearly
showed a destabilizing effect of all evaluated mutants, thus providing the structural basis for the
detrimental effect observed in functional studies.
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Human cathepsin F protein production using MilliporeSigma’s next generation
cell free protein expression system (Wheat Germ)
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Schematic representation of human cathepsin F (wtCatF) and CLN13 mutations
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Table 1. Neuronal ceroid lipofuscinosis-related proteins with their molecular characteristics, postulated function, \
interactions and lipid phenotype [

U
-

NCL-related Other names Protein size and  Posttransiational Protein locahzation Function Interactions Abnormal ipyd

protein name  synonyms structural modification composition”
features

CIN1 Palmetoyl protein thioesterase 1 306 aa, Ngly Lysosoma matnx, Palmitoylthioesterase S-acetylated proteins (CAP43, rhodopsin, Phospholipids,

(PP soluble protein  MGP extralysosomal vesicules, saposin D) ceramide, cholesterol
extracellular

CIN2 Tripeptxdvl peptidase 1 (TPP) 563 a2, Ngly Lysosoma matnx Serne protease CLN3, CINS nd
soluble protein =~ MGP

CIN3 - 438 aa, N-gly Late endosomal /lysosomal  Unknown; modulation of vesicular Hook1, Rab7, fodnn, kinesin-2Z CLNS, BMP, Phospholipids,
6 TM protein farnesylated membrane, presynaptic trafficking and fusion, Na“, K"ATPase galactosyl-ceramide

phosphorylated vesides pH regulation
CIN4 Cysteine-string protem alpha 198 aa, Palmnoylated Cytosolx, assocated to Hsc70 cochaperone, involved inexocyings  OPa, Hsp70, HspdD, HspB0, HIP, HOP, SGT, nd

(CSPex ), DNAJCS soluble protein vesicular membranes and endocyings SNAP-25, dyramin- 1, syntaxin, Gos, Rab3b,

synaptotagmin 9, myosin U8, calseniin,
DHHC1Y

CINS - 407 aa, N-gly Lysosoma matnx Unknown; modulation of vesicudar PPTT/CLNT, TPP1/COLNZ, CIN3, CLNG, (NS Sphingolipids
soluble protein  MGP trafficking predicted
CING 311 aa, None ER-membrane Unknown CLN5, CING Phaspho- and
7 T protein (RMP-2 glycosphingo-hipids,
cholesterol
CIN7 - 518 aa, Ngly Lysosoma membrane Unknown; transmembrane transporter AP-1, cathepsin L nd.
12TM protein  proteolytic cleaved function predicted
CINS 286 23, None ERERGIC-membrane Unknown; regulation in hpid metabolism  CLN5, CINS, VAPA GATEILG, syntaxin 8 Ceramides,

5 TM protem predicted phospholipids,
sphingoliprds,
sulfatides

CINS Unknown Unknown, role in ceramide synthesis Ceramide,
(postulated ) postulated sphingomyelin,
sphingolipeds,
globosides
CINIO Cathepsin D (CTSD 462 aa, soluble  Ngly Lysosoma matnx, Aspartyl endopeptidase APP, CST3, CTSB, proSAP, and several others  BMP, cholesterol,
protein M6P extraceflular phospho- and
sphingolipids
CINTI Progranulin, proepitheln, 593 aa, None Extracelular Unknown, roles in inflammation, MMPS, ADAMS, TGFa receptors, sortilin, nd.
ACTogranin soluble protein embryogenesis, cell motlity and ADAMTS-7/ADAMITS-12/perlecan/HDL,
tumorgenests postulated COMP
CINI2 ATPase 13A2, KRPPD, PARKS, 1180 aa, None Lysosoma membrane Unknown; regulation of ion homeostasss  Interaction to 43 protems involved in nd.
HSA9947, 10 TM protein postulated vesicular trafficdang and synuclein
RP-37C10.4 mesfolding postulated
CIN13 Cathepsin F (CTSF) 434 a2, Ngly Lysosomal matnx Cystemne protease (D47 antigen nd.
soluble protein  MGP
CINIS Potassium channel 289 aa, Phosphorylated Cytosolic, partally Unknown; modulation of on channel Cullin-3, KCTD7? nd
tetramerization soluble protein associated to membranes  activity predicted
domain-containing protein 7
(KCTD7)
a3, amino acxds, T, trarsmembrane domains, M6P, mannose 6-phosphate, N-gly, Nglycosylation, BMP, bis{ monoacy iglycero)phosphate, nd,, not described,
\ * In addition to the common lipopigment storage. /
Type B Kufs disease pedigrees 4]
Ku4 Ku10 Kul6
I-1 -2 -1 I-2 I-1 -2
GIy#EEAIaJ-l- NA Gin321Arg/+ | GIn321Arg/+ Tyr231Cys/+ | Ser318Leufs™27/+
t
-1 -3 -1 -2 -3 ii-4 -5 -6 Il 1 -2 -3

Gly458Alal+ Glyd E-B.ﬁla.i' Gly458Ala/ +.|'EEMBID Leu GiIn321Arg/ +/+ GIn321Arg/+ GIn321Argi+ +/+ GIn321Arg/+ Tyr231Cys/ MNA
Serd80Led  SerdB0Leu Gin321Arg Ser3d19Leufs*27
# # it # # # # # #
L3 "

Family Ku4: Braln pathology of the proband (II 3) [4]

hYS

Localization of CLN13 mutations on the 2D plot (A) and cartoon representation (B) \
of the mature form of human cathepsin F (1M6D:A) []
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Table 2. Effect of CLN13 mutations on the stability of human cathepsin F (1M6D:A) ] calculated using CUPSAT (6!

Mutation site Structural Features Experimental Method - Thermal
Protein sequence | Protein structure | S8 element Solvent Torsion angles | Overall Stability Torsion Predicted AAG
QoUBX1 TmGd:. A accessibility (g, W) (kcal/maol)

GIn321Arg GInS1Arg Helix 0.0% -60.0°, -38.9" | Destabilising Favourable -4.74

Glydo8Ala Gly182Ala Other (turns, 17.79% 56.5°, -145.7 | Destabilising Unfavourable |0.64

coils, etc.)
\SerdsﬂLeu Ser208Leu Sheet 0.0% -157.4°, 148.1" | Destabilising Unfavourable |-4.02 /
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A multi-omics approach to study monozygotic twins discordant for Amyotrophic Lateral Sclerosis
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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterised by progressive death of upper and lower motor neurons. 90% of patients have no prior family history (sporadic ALS),
while 10% of ALS patients have at least one other affected family member (familial ALS). This disease is phenotypically heterogeneous and its etiology is still poorly understood, as both genetic susceptibility
and environmental exposure contribute to the pathogenesis.

To investigate genetic and epigenetic factors underlying ALS, we studied a monozygotic twin pair discordant for ALS. We applied a multi-omics approach, combining whole exome sequencing with genome-
wide methylome- and transcriptome data from whole blood and PBMCs.
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Whole Exome Sequencing
o 4

Transcriptome Analysis

Methylation Analysis

. _ . *2 samples: one blood sample per subject
8 samples: biological duplicate and, for the second blood
sample, a technical triplicate *8 samples: a biological duplicate and, for each blood *50 ng of DNA according to Agilent Sure Select QXT Kit. WES has
. . . sample, a technical duplicate been processed using NextSeq 500/550 High Output Kit v2,
* 100 ng of RNA from PBMCs; library kit: lllumina TruSeq Stranded oroducing 2x150 bp read lengths and 30X coverage across
mRNA.  mRNA sequencing was performed using NextSeq *500 ng of DNA from whole blood converted by using samples
500/550 High Output Kit v2.5 (150 Cycles - 2 X 75 read length, bisulphite conversion technique. We used the Infinium
paled endyiebtaininetalne silei= Qe R Methylation EPIC Array scanned on the NextSeq 550. * Fastq files were aligned on GRCh37 genome and BWA software
. _ produced the bam files. For each patient, a list of variations in a
* Quality controls were assured using FastQC. Data were analyzed *Quality  controls  were  performed on lllumina VCF format file was produced by GATK software and annotation
genome (GRCh38/hg38). bt evaluated _d|fferent|al Y expresseq GenomeStudio and the Chip Analysis Methylation Pipeline analysis has been performed by ExomeDepth tool. We tested
genes (DEGs) by DESeq% it PRl gl < Okl Ene _ Iog2FC|> . (ChAMP)  Bioconductor package that allow the ALS vs healthy twin and healthy vs ALS twin; then variants were
L?SFIV' pathway analysis ha.s been conducted with different identification of differentially methylated probes (P.value classified as benign, pathogenic or of uncertain significance by
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genes are represented in the red scale, while downregulated Figure 2: Example of 2 out of 6 validated DEGs by ddPCR.
genes in the blue scale. On the right there are genes name, SERPING is confirmed to be downregulated in the ALS twin,
on the left genes are clustered by similar expression values while PF4V1 is upregulated. HPRT1 is the housekeeping gene
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We studied a discordant twin pair for ALS considering three different omics, independently and in combination, to identify disease-relevant changes. Twins tested negative for mutations in main ALS-genes.
From RNA-seq we identified 59 DEGs and validated 6 DEGs by ddPCR; functional analyses with distinct bioinformatic tools underlined a possible role of the immune system in the disease, as partially described
in literature. We also identified 2 differentially methylated probes in CACNA1G, expressed mostly in brain, and VAX1 genes and, filtering by AP values, we found 2 probes with AB <-0.25 in an intergenic region
and in RUSC1-AS1 gene and 2 probes with AP > 0.25 in AARS and KPNA4 genes. For exome analyses, 3 deletions and 1 duplication of uncertain significance were identified only in the ALS twin, while filtering
for frequency and QC we were able to identify 25 variants (15 exonic, 10 intronic). Further understanding of these immunological results and the validation of methylation results by methylation-specific
droplet digital PCR (ddMSP) combined with methylation-dependent restriction enzymes are ongoing to elucidate possible somatic genetic factors that could underlie susceptibility to sporadic ALS.
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Figure 3 Per residue energy decomposition and the 'aromatic cage’' of MAO B active site >

with docked molecules; 42H, 42Me and 258H. Computed contribution to the Gibbs binding free Figure 4 Free-energy profiles for the

energy (obtained from MD simulations using MM-PBSA approach and free energy decomposition per irreversible MAO B inhibition with 42Me.

residue) in kcalmol1. Per residue energy decomposition follows analysis the same trend in control Acronyms SP and TS indicate stationary points and

molecules as in newly designed candidates. transition states, respectively. Chemical structures
are depicted in Figure 1.

CONCLUSIONS
« Hit compound: 42Me
« Obtained thermodynamic and kinetic reaction profiles are more favourable compared to commercial drugs
« 42Me follows hydride abstraction mechanism
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